2014八年级下数学下册期末模拟试题
http://www.newdu.com 2024/11/25 05:11:20 新东方 佚名 参加讨论
一、选择题。(每小题3分,共30分) 1、若式子 在实数范围内有意义,则x的取值范围是( ) A.x≥ B.x> C.x≥ D.x> 2、下列二次根式中不能再化简的二次根式的是( ) A. B. C. D. 3、以下列各组数为边的三角形中,是直角三角形的有( ) (1)3,4,5;(2) , , ;(3)32,42,52;(4)0.03,0.04,0.05. A.1个 B.2个 C.3个 D.4个 4、与直线y=2x+1关于x轴对称的直线是( ) A.y=-2x+1 B.y=-2x-1 C D 5、如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( ) A. B. C. D. 6、对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限 ③ 当x>1时,y<0 ④y的值随x值的增大而增大,其中正确的个数是( ) A 0 B 1 C 2 D 3 7、如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( ) A.2 B. C. D. 8、八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为 ( ) A B C D 9、如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( ) A.4 B.3 C.2 D.1 10、小明、小宇从学校出发到青少年宫参加书法比赛,小明步行一段时间后,小宇骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小明出发时间t(分)之间的函数关系如图所示.下列说法:①小宇先到达青少年宫;②小宇的速度是小明速度的3倍;③a=20;④b=600.其中正确的是( ) A.①②③ B.①②④ C.①③④ D.①②③④ 第10题图 第9题图 二、写出你的结论,完美填空!(每小题3分,共24分) 11、对于正比例函数 , 的值随 的值减小而减小,则 的值为 。 12、从A地向B地打长途电话,通话3分钟以内(含3分钟)收费2.4元,3分钟后每增加通话时间1分钟加收1元(不足1分钟的通话时间按1分钟计费),某人如果有12元话费打一次电话最多可以通话 分钟. 第17题图 第18题图 13、写出一条经过第一、二、四象限的直线解析式为 。 14当5个整数从小到大排列后,其中位数为4,如果这组数据的唯一众数是6,那么这5个数的和的最大值是 。 15、如图,四边形ABCD的对角线AC,BD交于点O,有下列条件:①AO=CO,BO=DO;②AO=BO=CO=DO.其中能判断ABCD是矩形的条件是 (填序号) 16、已知 的值是 . 17、没有上盖的圆柱盒高为10cm,周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为 cm 18、已知在平面直角坐标系中,点O为坐标原点,过O的直线OM经过点A(6,6),过A作正方形ABCD,在直线OA上有一点E,过E作正方形EFGH,已知直线OC经过点G,且正方形ABCD的边长为2,正方形EFGH的边长为3,则点F的坐标为 . 三、解答题。 19、计算(6分) 20(8分)、在平面直角坐标系中,已知:直线与直线的交点在第四象限,求整数的值。 21、(8分)某中学对“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为 ,又知此次调查中捐15元和20元得人数共39人. (1) 他们一共抽查了多少人? (2) 这组数据的众数、中位数各是多少? (3) 若该校共有1500名学生,请估算全校学生共捐款多少元? 第22题图 22(8分)、如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB. (1)求证:∠ABE=∠EAD; (2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形. 23(12分)、现场学习:在△ABC中,AB、BC、AC三边的长分别为 、 、 ,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法. (1)△ABC的面积为: _________ ; (2)若△DEF三边的长分别为 、 、 ,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积; (3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积. 24、(12分)某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套.已知做一套M型号的时装需要A种布料0.6m,B种布料O.9m,可获利45元,做一套N型号的时装需要A种布料1.1m,B种布料0.4m,可获利50元.若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元. (1)求y与x的函数关系式,并求出自变量x的取值范围; (2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少? 25(12分)、如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足 , (1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标; (2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由; (3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M。求 的值 附:参考答案 一、1---10 ADBBD BCABB 二、11、2 12、12 13、② 14、50 15、20 16、(9,6) 三、17(1) (4分) (2) 2 (4分) 18、(1)过C作CE∥DA交AB于E, ∴∠A=∠CEB 又∠A=∠B ∴∠CEB=∠B ∴BC=EC 又∵AB∥DC CE∥DA ∴四边形AECD是平行四边形 ∴AD=EC ∴AD=BC (4分) (2)(1)的逆命题:在梯形ABCD中,AB∥DC,若AD=BC,求证:∠A=∠B 证明:过C作CE∥DA交AB于E ∴∠A=∠CEB 又AB∥DC CE∥DA ∴四边形AECD是平行四边形 ∴AD=EC 又∵AD=BC ∴BC=EC ∴∠CEB=∠B ∴∠A=∠B (4分) 19、 证明:连结BD, ∵△ACB与△ECD都是等腰直角三角形, ∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,AC2+BC2=AB2, ∴2AC2=AB2.∠ECD-∠ECB=∠ACB-∠ECB, ∴∠ACE=∠BCD. 在△AEC和△BDC中, AC=BC ∠ACE=∠BCD EC=DC , ∴△AEC≌△BDC(SAS). ∴AE=BD,∠AEC=∠BDC. ∴∠BDC=135°, 即∠ADB=90°. ∴AD2+BD2=AB2, ∴AD2+AE2=2AC2. (8分) 20、证明:(1)在平行四边形ABCD中,AD∥BC, ∴∠AEB=∠EAD, ∵AE=AB, ∴∠ABE=∠AEB, ∴∠ABE=∠EAD; (3分) (2)∵AD∥BC, ∴∠ADB=∠DBE, ∵∠ABE=∠AEB,∠AEB=2∠ADB, ∴∠ABE=2∠ADB, ∴∠ABD=∠ABE﹣∠DBE=2∠ADB﹣∠ADB=∠ADB, ∴AB=AD, 又∵四边形ABCD是平行四边形, ∴四边形ABCD是菱形. (5分) 21、∵直线y=﹣ x+8,分别交x轴、y轴于A、B两点, 当x=0时,y=8;当y=0时,x=6. ∴OA=6,OB=8 ∵CE是线段AB的垂直平分线 ∴CB=CA 设OC= ,则 解得: ∴点C的坐标为(﹣ ,0); (6分) ∴△ABC的面积S= AC×OB= × ×8= (2分) 22、解:(1)根据格子的数可以知道面积为S=3×3﹣ = ; (2分) (2)画图为 计算出正确结果S△DEF=3; (3分) (3)利用构图法计算出S△PQR= △PQR、△BCR、△DEQ、△AFP的面积相等 计算出六边形花坛ABCDEF的面积为S正方形PRBA+S正方形RQDC+S正方形QPFE+4S△PQR=13+10+17+4× =62. (5分) 23、解:(1)填表如下: 调入地 化肥量(吨) 调出地 甲乡 乙乡 总计 A城 x 300﹣x 300 B城 260﹣x 240﹣(300﹣x) 200 (3分) 总计 260 240 500 (2)根据题意得出: y=20x+25(300﹣x)+25(260﹣x)+15[240﹣(300﹣x)]=﹣15x+13100; (3分) (3)因为y=﹣15x+13100,y随x的增大而减小, 根据题意可得: , 解得:60≤x≤260, 所以当x=260时,y最小,此时y=9200元. 此时的方案为:A城运往甲乡的化肥为260吨,A城运往乙乡的化肥为40吨,B城运往甲乡的化肥为20吨,B城运往乙乡的化肥为200吨. (4分) 24、(1)由题意得 ,直线y=bx+c的解析式为:y=2x+8 D(2,2).(4分) (2)当y=0时,x=﹣4,∴E点的坐标为(﹣4,0). 当直线EF平移到过D点时正好平分正方形AOBC的面积. 设平移后的直线为y=2x+b,代入D点坐标,求得b=﹣2. 此时直线和x轴的交点坐标为(1,0),平移的距离为5,所以t=5秒. (8分) (3)过P点作NQ∥OA,GH∥CO,交CO、AB于N、Q,交CB、OA于G、H. 易证△OPH≌△MPQ,四边形CNPG为正方形. ∴PG=BQ=CN. ∴ ,即 . (12分) 对于这个问题我有话说 (责任编辑:admin) |
- 上一篇:2014八年级数学下册第三次月考试题
- 下一篇:2014八年级数学下册期末复习题