八年级数学教学设计:三角形相似的判定
http://www.newdu.com 2024/11/25 12:11:43 新东方 佚名 参加讨论
教学建议 知识结构 重点、难点分析 相似三角形的判定及应用是本节的重点也是难点. 它是本章的主要内容之一,是在学完相似三角形的基础上,进一步研究相似三角形的本质,以完成对相似三角形的定义、判定全面研究.相似三角形的判定还是研究相似三角形性质的基础,是今后研究圆中线段关系的工具. 它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大. 释疑解难 (1)全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的3个定理和判定两个三角形相似的3个定理之间有内在的联系,不同之处仅在于前者是后者相似比为1的情况. (2)相似三角形的判定定理的选择:①已知有一角相等时,可选择判定定理1与判定定理2;②已知有二边对应成比例时,可选择判定定理2与判定定理3;③判定直角三角形相似时,首先看是否可以用判定直角三角形的方法来判定,如果不能,再考虑用判定一般三角形相似的方法来判定. (3)相似三角形的判定定理的作用:①可以用来判定两个三角形相似;②间接证明角相等、线段域比例;③间接地为计算线段的长度及角的大小创造条件. (4)三角形相似的基本图形:①平行型:如图1,“A”型即公共角对的边平行,“×”型即对顶角对的边平行,都可推出两个三角形相似;②相交线型:如图2,公共角对的边不平行,即相交或延长线相交或对顶角所对边延长相交.图中几种情况只要配上一对角相等,或夹公共角(或对顶角)的两边成比例,就可以判定两个三角形相似。 (第1课时) 一、教学目标 1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论. 2.继续渗透和培养学生对类比数学思想的认识和理解. 3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力. 4.通过学习,了解由特殊到一般的唯物辩证法的观点. 二、教学设计 类比学习,探讨发现 三、重点及难点 1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论. 2.教学难点:是了解判定定理1的证题方法与思路. 四、课时安排 1课时 五、教具学具准备 多媒体、常用画图工具、 六、教学步骤 [复习提问] 1.什么叫相似三角形?什么叫相似比? 2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况. (责任编辑:admin) |