八年级数学教学设计:提公因式法(2)
http://www.newdu.com 2024/11/25 01:11:15 新东方 佚名 参加讨论
特点:左边,整式×整式;右边,是多项式. 可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解. 定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 如:因式分解:ma+mb+mc=m(a+b+c). 整式乘法:m(a+b+c)=ma+mb+mc. 让学生说出因式分解与整式乘法的联系与区别. 联系:同样是由几个相同的整式组成的等式. 区别:这几个相同的整式所在的位置不同,上式是因式分解;下式是整式乘法.两者是方向相反的恒等变形,二者是一个式子的不同表现形式,一个是多项式的表现形式,一个是两个或几个因式积的表现形式. 例1 下列各式从左到右哪些是因式分解?(投影) (1)x2-x=x(x-1) (√) (2)a(a-b)=a2-ab (×) (3)(a+3)(a-3)=a2-9 (×) (4)a2-2a+1=a(a-2)+1 (×) (5)x2-4x+4=(x-2)2 (√) 下面我们学习几种常见的因式分解方法. 3.提公因式法: 我们看多项式:ma+mb+mc 请学生指出它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式. 注意:公因式是各项都含有的公共的因式. 又如:a是多项式a2-a各项的公因式. ab是多项式5a2b-ab2各项的公因式. 2mn是多项式4m2np-2mn2q各项的公因式. 根据乘法的分配律,可得 m(a+b+c)=ma+mb+mc, 逆变形,便得到多项式ma+mb+mc的因式分解形式 ma+mb+mc=m(a+b+c). 这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式 ma+mb+mc写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法. 定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多 项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. 显然,由定义可知,提公因式法的关键是如何正确地寻找公因式.让学生观察上面的公因式的特点,找出确定公因式的万法:(1)公因式的系数应取各项系数的最大公约数:(2)字母取各项的相同字母,而且各字母的指数取次数例2 指出下列各多项式中各项的公因式: (1)ax+ay+a (a) (2)3mx-6mx2 (3mx) (3)4a2+10ah (2a) (4)x2y+xy2 (xy) (5)12xyz-9x2y2 (3xy) 例3 把8a3b2-12ab3c分解因式. 分析:分两步:第一步,找出公因式;第二步,提公因式. 先引导学生按确定公因式的方法找出多项式的公因式4ab2. 解:8a3b2-12ab3c=4ab2·2a2-4ab2·3bc=4ab2(2a2-3bc). 说明: (1)应特别强调确定公因式的两个条件以免漏取. (责任编辑:admin) |