初中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点总结学习方法与技巧补课解题技巧学习计划表-人教网-初中试卷网-中学学科网

首页 > 初中数学 > 初二试题库 > 月考 >

初二数学上册知识教案:《圆》整章复习导学

北京 上海 广州 武汉 西安 重庆 成都 长沙 长春 哈尔 杭州 合肥
苏州 太原 天津 徐州 厦门 郑州 宁波 青岛 南京 兰州 昆明 济南
深圳 沈阳 鞍山 大连 福州 佛山 贵阳 黄石 荆州 吉林 内蒙 洛阳
宜昌 湘潭 襄樊 新疆 无锡 唐山 镇江 河北 南通 株洲 南宁 南昌

    《圆》整章复习导学案
    时间:12.31
    本次我们一起来复习几何的最后一章——圆.该章是中考中考查知识点最多的一章之一.本章包含的知识的变化、所含定义、定理是其它章节中所不能比的.本章分为四大节:1.圆的有关性质;2.直线和圆的位置关系;3.圆和圆的位置关系;4.正多边形和圆.
    一、基本知识和需说明的问题:
    (一)圆的有关性质,本节中最重要的定理有4个.
    1.垂径定理:本定理和它的三个推论说明: 在(1)垂直于弦(不是直径的弦);(2)平分弦;(3)平分弦所对的弧;(4)过圆心(是半径或是直径)这四个语句中,满足两个就可得到其它两个的结论.如垂直于弦(不是直径的弦)的直径,平分弦且平分弦所对的两条弧。条件是垂直于弦(不是直径的弦)的直径,结论是平分弦、平分弧。再如弦的垂直平分线,经过圆心且平分弦所对的弧。条件是垂直弦,、分弦,结论是过圆心、平分弦.
    应用:在圆中,弦的一半、半径、弦心距组成一个直角三角形,利用勾股定理解直角三角形的知识,可计算弦长、半径、弦心距和弓形的高.
    2.圆心角、弧、弦、弦心距四者之间的关系定理:在同圆和等圆中, 圆心角、弧、弦、弦心距这四组量中有一组量相等,则其它各组量均相等.这个定理证弧相等、弦相等、圆心角相等、弦心距相等是经常用的.
    3.圆周角定理:此定理在证题中不大用,但它的推论,即弧相等所对的圆周角相等;在同圆或等圆中,圆周角相等,弧相等.直径所对的圆周角是直角,90°的圆周角所对的弦是直径,都是很重要的.条件中若有直径,通常添加辅助线形成直角.
    4.圆内接四边形的性质:略.
    (二)直线和圆的位置关系
    1.性质:圆的切线垂直于经过切点的半径.(有了切线,将切点与圆心连结,则半径与切线垂直,所以连结圆心和切点,这条辅助线是常用的.)
    2.切线的判定有两种方法.
    ①若直线与圆有公共点,连圆心和公共点成半径,证明半径与直线垂直即可.
    ②若直线和圆公共点不确定,过圆心做直线的垂线,证明它是半径(利用定义证)。根据不同的条件,选择不同的添加辅助线的方法是极重要的.
    3.三角形的内切圆:内心是内切圆圆心,具有的性质是:到三角形的三边距离相等,还要注意说某点是三角形的内心.
    连结三角形的顶点和内心,即是角平分线.
    4.切线长定理:自圆外一点引圆的切线,则切线和半径、圆心到该点的连线组成直角三角形,还要注意, A
    B
    (三)圆和圆的位置关系
    1.记住5种位置关系的圆心距d与两圆半径之间的相等或不等关系.会利用d与R,r之间的关系确定两圆的位置关系,会利用d,R,r之间的关系确定两圆的位置关系.
    2.相交两圆,添加公共弦,通过公共弦将两圆连结起来.
    (四)正多边形和圆
    1、弧长公式
    2、扇形面积公式
    3、圆锥侧面积计算公式
    S= 2π =π
    二巩固练习
    一、精心选一选,相信自己的判断!(本题共12小题,每小题3分,共33分)
    1.如图,把自行车的两个车轮看成同一平面内的两个圆,则它们的位置关系是
    A.外离 B.外切 C.相交 D.内切
    2.如图,在⊙O中,∠ABC=50°,则∠AOC等于
    A.50° B.80° C.90 D.100°
    3.如图,AB是⊙O的直径,∠ABC=30°,则∠BAC =
    A.90° B.60° C.45° D.30°
    4.已知⊙O的直径为12cm,圆心到直线L的距离为6cm,则直线L与⊙O的公共点的个数为 A.2 B.1 C.0 D.不确定
    5.已知⊙O1与⊙O2的半径分别为3cm和7cm,两圆的圆心距O1O2 =10cm,则两圆的位置关系是 A.外切 B.内切 C.相交 D.相离
    6.已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,则⊙O的半径是
    A.3厘米 B.4厘米 C.5厘米 D.8厘米
    7.下列命题错误的是
    A.经过三个点一定可以作圆 B.三角形的外心到三角形各顶点的距离相等
    C.同圆或等圆中,相等的圆心角所对的弧相等 D.经过切点且垂直于切线的直线必经过圆心
    8.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定
    A.与x轴相离、与y轴相切 B.与x轴、y轴都相离
    C.与x轴相切、与y轴相离 D.与x轴、y轴都相切
    9.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是
    A.25π B.65π C.90π D.130π
    10.如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分别为边AB、AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为
    A.73 π-78 3 B.43 π+78 3 C.π D.43 π+3
    11.如图,已知圆锥的底面圆半径为r(r>0),母线长OA为3r,C为母线OB的中点,在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短路线长为
    A.3 2 r B.33 2 r C. 3 3 r D.33 r
    二、细心填一填,试自己的身手!(本大题共6小题,每小题3分,共18分)
    12.各边相等的圆内接多边形_____正多边形;各角相等的圆内接多边形_____正多边形.(填“是”或“不是”)
    13.△ABC的内切圆半径为r,
    △ABC的周长为l,则△ABC的面积
    为_______________ .
    14.已知在⊙O中,半径r=13,
    弦AB∥CD,且AB=24,CD=10,则AB与CD的距离为__________.
    15.同圆的内接正四边形和内接正方边形的连长比为
    16.如图,在边长为3cm的正方形中,⊙P与⊙Q相外切,且⊙P分别与DA、DC边相切,⊙Q分别与BA、BC边相切,则圆心距PQ为______________.
    17.如图,⊙O的半径为3cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为_________s时,BP与⊙O相切.
    三、用心做一做,显显自己的能力!(本大题共10小题,满分70分)
    18.(本题满分8分)如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?
    19.(本题满分8分)如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.
    20.(本题满分8分)如图,线段AB经过圆心O,交⊙O于点A、C,点D在⊙O上,连接AD、BD,∠A=∠B=30°,BD是⊙O的切线吗?请说明理由.
    21.如图10,BC是⊙O的直径,A是弦BD延长24线上一点,切线DE平分AC于E.
    (1)求证: AC是⊙O 的切线.(2)若∠A =45°,AC =10,求四边形BCED的面积.
    22. (本题满分10分)
    如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点, 交AD于点G,交AB于点F.
    (1)求证:BC与⊙O相切;
    (2)当∠BAC=120°时,求∠EFG的度数
    23.如图,AC是⊙O的直径,PA、PB切⊙O于A、B,AC、PB的延长线交于D,若AC=3cm,DC=1cm,
    DB=2cm,求:(1)PB的长;(2)ΔDOP的面积.
    24.(本题满分12分)已知:如图△ABC内接于⊙O,OH⊥AC于H,过A点的切线与OC的延长线交于点D,∠B=30°,OH=53 .请求出:
    (1)∠AOC的度数;
    (2)劣弧AC的长(结果保留π);
    (3)线段AD的长(结果保留根号).
        相关推荐:
     (责任编辑:admin)