初中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点总结学习方法与技巧补课解题技巧学习计划表-人教网-初中试卷网-中学学科网

首页 > 初中数学 > 综合辅导 >

八年级上册数学作业本答案(人教版)(2)


    【2.3】8.不正确,画图略1.70°,等腰  2.3  3.70°或40°9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°4.△BCD是等腰三角形.理由如下:由BD,CD 分别是∠ABC,∠ACB 的平50   分线,得∠DBC=∠DCB.则DB=DC
    【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF和△EFC 都是等腰三角形.理由如下:1.C  2.45°,45°,6  3.5∵ △ADE 和△FDE 重合, ∴ ∠ADE=∠FDE.4.∵ ∠B+∠C=90°, ∴ △ABC是直角三角形∵ DE∥BC, ∴ ∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴ ∠B=∠DFB. ∴ DB=DF,即△DBF是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC 是等腰三角形∴ DE=DF.∠ECD=45°, ∴ ∠EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20°和100° (2)把60°分成20°和40°∴ ∠EDF=90°,即DE⊥DF
    【2.4】【2.5(2)】1.(1)3 (2)51.D  2.33°  3.∠A=65°,∠B=25°  4.DE=DF=3m2.△ADE是等边三角形.理由如下: ∵ △ABC 是等边三角形,∴ ∠A=∠B=∠C=60°. ∵ DE∥BC, ∴ ∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE  6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略【2.6(1)】4.(1)AB∥CD.因为∠BAC=∠ACD=60°1.(1)5 (2)12 (3)槡5  2.A=225(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ是等边三角形.则∠APQ=60°.而 BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP, ∴ ∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.4.槡2 2cm (或槡8cm)  5.169cm2  6.18米∴ ∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC)·BD′=1(a+b)2,6.△DEF是等边三角形.理由如下:由 ∠ABE+ ∠FCB= ∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°. ∴ ∠DFE=60°.同理可S梯形BCC′D′=S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°, ∴ △DEF是等边三角形由1(a+b)2=ab+17.解答不唯一,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能 (2)能  2.是直角三角形,因为满足m2=p2+n2  3.符合4.∠BAC,∠ADB,∠ADC都是直角(第7题)5.连结BD,则∠ADB=45°,BD= 槡32. ∴ BD2+CD2=BC2,∴ ∠BDC=90°. ∴ ∠ADC=135°第3章 直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形)  2.8,12,6,长方形1.BC=EF或AC=DF 或∠A=∠D 或∠B=∠E  2.略3.直五棱柱,7,10,3  4.B3.全等,依据是“HL”5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形∴ ∠AEC=90°,即△AEC是等腰直角三角形状、面积完全相同的长方形5.∵ ∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm∴ Rt△ABD≌Rt△BAC(HL). ∴ ∠CAB=∠DBA,7.正多面体 顶点数(V) 面数(F) 棱数(E) V+F-E∴ OA=OB正四面体6.DF4462⊥BC.理由如下:由已知可得 Rt△BCE≌Rt△DAE,正六面体∴ ∠B=∠D,从而∠D+∠C=∠B+∠C=90°86122正八面体68122复习题正十二面体2012302正二十面体1.A1220302  2.D  3.22  4.13或槡119  5.B  6.等腰符合欧拉公式7.72°,72°,4  8.槡7  9.64°10.∵ AD=AE, ∴ ∠ADE=∠AED, ∴ ∠ADB=∠AEC.【3.2】又∵ BD=EC, ∴ △ABD≌△ACE. ∴ AB=AC1.C11.48  2.直四棱柱  3.6,7  12.B13.连结BC. ∵ AB=AC, ∴ ∠ABC=∠ACB.4.(1)2条 (2)槡5  5.C又∵ ∠ABD=∠ACD, ∴ ∠DBC=∠DCB. ∴ BD=CD6.表面展开图如图.它的侧面积是14.25(π15+2+2.5)×3=18(cm2);15.连结BC,则Rt它的表面积是△ABC≌Rt△DCB, ∴ ∠ACB=∠DBC,从而OB=OC16.AB=10cm.∠AED=∠C=Rt∠,AE=AC=6cm,DE=CD.18+12×15×2×2=21(cm2)可得BE=4cm.在Rt△BED 中,42+CD2=(8-CD)2,解得CD=3cm【3.3】(第6题)1.②,③,④,①  2.C52   3. (责任编辑:admin)