罗默经过长期细心的观察,他发现:在图4-4中,若地球在E1和木星在J1看到一次木星卫星蚀,再用平均周期推算此后任一次蚀的时间,则后一次蚀一般地并不刚好发生在所推算的时间。例如当地球在经过E1之后约三个月行至E2处,实际看到蚀的时间较推算出的时间延迟了约10分钟。这是因为当地球在作自E1向E2而达E3的运动时,地球与木星的距离在逐渐增大,自木星来的任一信号都必须比前一信号多走一些距离才到达地球。经过由E1到E2的三个月,所有相邻蚀的时间延迟的总和约为10分钟。当地球继续由E2经过E4而向E5运动时,地球与木星的距离在逐渐减小,自木星来的任一信号都比前一信号少走一些距离。罗默从他的测量得出,光走过与地球轨道半径等长的距离所需的时间约为11分钟。在罗默的时代只知道地球轨道半径的近似值,当取此半径为149.7×106千米时,算得光速c=215000千米/秒。 在地球上较短的距离内用实验的方法测出光速是19世纪中叶的事了。1849年德国物理学家菲索用“齿轮法”测出光速。如图4-5所示,从光源S发出的光,射到半镀银的平面镜A上,经A反射后,从齿轮N的齿间空隙射到反射镜M上,然后再反射回来,通过半镀银镜射入观察者眼中。如果使齿轮转动,那么在光从齿间到达M再反射回齿间的时间Δt内,齿轮将转过一个角度。如果这时齿a和a′间的空隙恰好被a所占据,则反射回来的光被遮断,因而观察者将看不到光。但如果这时齿轮恰好转到下一个齿间空隙,由M反射回来的光从齿间空隙通过,观察者就能重新看到光。齿轮的齿数已知,测出齿轮的转速,可算出齿轮转过一个齿的时间Δt,再测出M、N间的距离,就可以算出光速。菲索当时测得空气中的光速:c=315300千米/秒。1851年,法国物理学家傅科用旋转镜法测得空气中的光速:c=298×108米/秒。傅科还第一次测出了光在水中的传播速度为2.23×108米/秒,相当空气中光速的四分之三。1924—1927年,美国科学家迈克尔孙综合菲索和傅科测光速方法的优点,用旋转棱镜法,在美国海拔5500米、相距35千米的威尔孙山和圣安东尼奥山进行实验,精确地测得光速:c=299796±4千米/秒。非常接近1975年第15届国际计量大会决议采用的光速值c=299792.458±0.001千米/秒。 (责任编辑:admin) |