数学第19章 分段函数(练习) 练1. 已知一次函数y=2x+4的图象上有两点A(3,a),B(4,b),则a与b的大小关系为_________ 练2 一次函数y=(m2+3)x-2,y随x的增大而_________ 练3 函数y=(m – 1)x+1是一次函数,且y随自变量x增大而减小,那么m的取值为______. 练4 如图,点A(x1,y2)与点B(x2,y2)都是直线y=kx+b上的点,且x1<x2,试比较y1 y2 练1:为缓解用电紧张,某电力公司特制定了新的用电收费标准,每月用电量x(度)与应付电费y(元)的关系如图所示. (1)根据图象,请分别求出当0≤x≤50和x>50时,y与x的函数解析式. (2)请回答: 当每月用电量不超过50度时,收费标准是 ; 当每月用电量超过50度时,收费标准是 练2 小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分。试写出这段时间里她的跑步速度y (米/分)随跑步时间x (分)变化的函数关系式,并画同函数图象. 练3 学校组织学生到距离6千米的展览馆参观,学生王军因故未能乘上学校的包车,于是在校门口乘出租车,出租车收费标准如下: (1)写出费用y与行驶里程x之间的函数关系式,并画出函数图象 (2)王军仅有14元钱,他到展览馆的车费是否足够? 春、秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”.由霜冻导致植物生长受到影响或破坏的现象称为霜冻灾害. 某种植物在气温是0℃以下持续时间超过3小时,即遭受霜冻灾害,需采取预防措施.右图是气象台某天发布的该地区气象信息,预报了次日0时~8时气温随时间变化情况,其中0时~5时,5时~8时的图象分别满足一次函数关系.请你根据图中信息,针对这种植物判断次日是否需要采取防霜冻措施,并说明理由. 对于这个问题我有话说 (责任编辑:admin) |