初中学习网-初中学习方法、解题技巧、知识点总结、学习计划、同步辅导资料!

初中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点总结学习方法与技巧补课解题技巧学习计划表-人教网-初中试卷网-中学学科网

当前位置: 首页 > 初中数学 > 初二试题库 > 月考 >

2014八年级数学下册期末复习题

http://www.newdu.com 2020-05-15 新东方 佚名 参加讨论

    一.选择题(共10小题,满分20分,每小题2分)
    1.若式子  在实数范围内有意义,则x的取值范围是(  )
    A.x=1 B.x≥1 C.x>1 D.x<1
    2.下列计算正确的是(  )
    3.下列各式计算正确的是(  )
    4.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
    ①BD=CE;
    ②BD⊥CE;
    ③∠ACE+∠DBC=45°;
    ④BE2=2(AD2+AB2),
    其中结论正确的个数是(  )
    A.1 B.2 C.3 D.4
    5.一直角三角形的两边长分别为3和4.则第三边的长为(  )
    6.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为(  )
    A.78° B.75°       C.60° D.45°
    (第六题)                                             (第七题)
    7.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至
    点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG
    的长为(  )
    8火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,其中四边形OABC是等腰梯形,则下列结论中正确的是(  )
    A.火车整体都在隧道内的时间为30秒
    B.火车的长度为120米
    C.火车的速度为30米/秒
    D.隧道长度为750米
    9.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是(  )
    A.  B.
    C.  D.
    10.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是(  )
    A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=-8t+25
    B.途中加油21升
    C.汽车加油后还可行驶4小时
    D.汽车到达乙地时油箱中还余油6升
    二.填空题(共10小题,满分30分,每小题3分)
    11.若代数式  有意义,则x的取值范围是       .
    12.若 ,则m5-2m4-2011m3的值是             .
    13.如图,OP=1,过P作PP1⊥OP,得OP1=  ;再过P1作P1P2⊥OP1且P1P2=1,得OP2=  ;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012=   。
    14. 已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,-2)和点B(1,0),则k=   ,b=   .
    15.如图所示,在△ABC中,∠C=2∠B,点D是BC上一点,AD=5,且AD⊥AB,点E是BD的中点,AC=6.5,则AB的长度为    .
    16.如图,?ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为   .
    17.按如图方式作正方形和等腰直角三角形.若第一个正方形的边长AB=1,第一个正方形与第一个等腰直角三角形的面积和为S1,第二个正方形与第二个等腰直角三角形的面积和为S2,…,则第n个正方形与第n个等腰直角三角形的面积和Sn=    .
    18.函数  中,自变量x的取值范围是
    19. 平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为        .
    20.市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是
    甲 乙 丙 丁
    平均数 8.2 8.0 8.0 8.2
    方差 2.1 1.8 1.6 1.4
    三.解答题(共10小题,满分60分)
    21.先化简,再求值:  ,
    22.先化简,再计算:
    23.联想三角形外心的概念,我们可引入如下概念.
    定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
    举例:如图1,若PA=PB,则点P为△ABC的准外心.
    应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=  AB,求∠APB的度数.
    探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.
    24.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
    (1)求证:DE平分∠BDC;
    (2)若点M在DE上,且DC=DM,求证:ME=BD.
    25.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3
    (1)求证:BN=DN;
    (2)求△ABC的周长.
    26.如图,?ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.
    (1)求证:△AOE≌△COF;
    (2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.
    27.如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.
    28.在△ABC中,AB=AC=5cm,D、E分别是AB,AC的中点,将△EBC沿BC折叠得到△FBC,连接C、D.
    (1)求证:四边形DBFC是平行四边形;
    (2)若BC=5cm,求D、F两点之间的距离.
    29.如图(1)所示,已知AD是△ABC的中线,∠ADC=45°,把△ABC沿AD对折,点C落到点E的位置,连接BE,如图(2)
    (1)若线段BC=12cm,求线段BE的长度.
    (2)在(1)的条件下,若线段AD=8cm,求四边形AEBD的面积.
    (3)若折叠后得到的四边形AEBD的是平行四边形,试判断△ADC的形状,并说明理由.
    30.已知正方形ABCD的边长是2,E是CD的中点,动点P从点A出发,沿A→B→C→E运动,到达E点即停止运动,若点P经过的路程为x,△APE的面积记为y,试求出y与x之间的函数解析式,并求出当y=  时,x的值.
    对于这个问题我有话说
     (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
初中语文
初中数学
初中英语
初中物理
初中化学
初中生物
初中历史
初中地理
初中道德与法治
初中历史与社会
初中日语、俄语
学习方法
初中竞赛