初二期下册知识点归纳 第一章分式 1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变 2分式的运算 (1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 (2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减 3整数指数幂的加减乘除法 4分式方程及其解法 第二章反比例函数 1反比例函数的表达式、图像、性质 图像:双曲线 表达式:y=k/x(k不为0) 性质:两支的增减性相同; 2反比例函数在实际问题中的应用 第三章勾股定理 1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方 2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形 第四章四边形 1平行四边形 性质:对边相等;对角相等;对角线互相平分。 判定:两组对边分别相等的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形; 对角线互相平分的四边形是平行四边形; 一组对边平行而且相等的四边形是平行四边形。 推论:三角形的中位线平行第三边,并且等于第三边的一半。 2特殊的平行四边形:矩形、菱形、正方形 (1)矩形 性质:矩形的四个角都是直角; 矩形的对角线相等; 矩形具有平行四边形的所有性质 判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形; 推论:直角三角形斜边的中线等于斜边的一半。 (2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质 判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。 (3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。 3梯形:直角梯形和等腰梯形 等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。 第五章数据的分析 加权平均数、中位数、众数、极差、方差 (责任编辑:admin) |