教学目的: 使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识” 教学重点: 正方形的定义. 教学难点: 正方形与矩形、菱形间的关系. 教学方法:双边合作 如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法.为了活跃学生的思维,可以得出下列问题让学生思考: (1)对角线相等的菱形是正方形吗?为什么? (2)对角线互相垂直的矩形是正方形吗?为什么? (3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件? (4)能说“四条边都相等的四边形是正方形”吗?为什么? (5)说“四个角相等的四边形是正方形”,对吗? 教学过程: 让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片. 问:所得的图形是矩形吗?它与一般的矩形有什么不同? 所得的图形是菱形吗?它与一般的菱形有什么不同? 所得的图形在小学里学习时称它为什么图形?它有什么特点? 由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形. (一)新课 由正方形的定义可以得知:正方形是有一组邻边相等的矩形,又是有一个角是直角的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质. 请同学们推断出正方形具有哪些性质? 性质1、(1)正方形的四个角都是直角。 (2)正方形的四条边相等。 性质2、(1)正方形的两条对角线相等。 (2)正方形的两条对角线互相垂直平分。 (3)正方形的每条对角线平分一组对角。 例1 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形. 已知:四边形ABCD是正方形,对角线AC、BD相交于点O. 求证:△ABO、△BCO、△CDO、△DAO是全等的 等腰直角三角形. 证明:∵四边形ABCD是正方形, (责任编辑:admin) |