教学目的 1,使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。 2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。 重点、难点、关键 1,重点:正弦的概念。 2,难点:正弦的概念。 3,关键:相似三角形对应边成比例的性质。 教学过程 一、复习提问 1、什么叫直角三角形? 2,如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示? 二、新授 1,让学生阅读教科书第一页上的插图和引例,然后回答问题: (1)这个有关测量的实际问题有什么特点?(有一个重要的测量点不可能到达) (2)把这个实际问题转化为数学模型后,其图形是什么图形?(直角三角形) (3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。) (4)这个实际问题可归结为怎样的数学问题?(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。) 但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。 2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。 类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。 那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢? (引导学生回答;在这些直角三角形中,∠A的对边与斜边的比值仍是一个固定值。) 三、巩固练习: 在△ABC中,∠C为直角。 1,如果∠A=600,那么∠B的对边与斜边的比值是多少? 2,如果∠A=600,那么∠A的对边与斜边的比值是多少? 3,如果∠A=300,那么∠B的对边与斜边的比值是多少? 4,如果∠A=450,那么∠B的对边与斜边的比值是多少? 四、小结 五、作业 1,复习教科书第1-3页的全部内容。 2,选用課时作业设计。 (责任编辑:admin) |