10.C 考查代数式的列法. 二、填空题 11.(1)am (2)(a-b) 12.5 13.14 14.6a2 15.2x3y2 16. 17.a2-b2=(a+b)(a-b) 18.3 2 19.-17 ∵当m=-3时,am5+bm3+cm-5=7, ∴am5+bm3+cm=12. 当m=-3时,am5+bm3+cm=-12, ∴am5+bm3+cm-5=-12-5=-17. 20.(3n+1) 三、解答题 21.解:(1)x2-2x+3 原式=(4x2-3x2)+(-8x+6x)+(5-2)=x2-2x+3; (2)-8a2x2-9ax2+8ax 原式=(-4a2x2-4a2x2)+(-8ax2-ax2)+(5ax+3ax)=-8a2x2-9ax2+8ax; (3)8x4-5x-1 原式=3x4+2x-3+5x4-7x+2= (3x4+5x4)+(2x-7x)+(-3+2)=8x4-5x-1; (4)x-5y 原式=10x-35y-9x+30y=(10x-9x)+(-35y+30y)=x-5y. 22.解:(1)原式=a2-ab+2b2-2b2+2a2= (a2+2a2)+(2b2-2b2)-ab=3a2-ab. 当a=-13,b=5时,原式=3×-132--13×5=13+53=2; (2)原式=3x2y-2x2y+3(2xy-x2y)+xy=3x2y-2x2y+6xy-3x2y+xy=(3x2y-2x2y-3x2y)+(6xy+xy)=-2x2y+7xy 当x=-1,y=-2时,原式=-2×(-1)2×(-2)+7×(-1)×(-2)=4+14=18. 23.解:由题意有m=0,m+2=x,y+1=3,即x=2,y=2,则原式=2x2-3xy-6y2=2×22-3×2×2-6×22=-28. 24.解:(1)(ab-πr2)平方米; (2)ab-πr2=300×200-π×102=(60 000-100π)(平方米),所以空地的面积为(60 000-100π)平方米. 25.解:(1)如图,a2+3ab+2b2=(a+b)(a+2b); (2)3 7 26.解:根据观察知答案分别为:(1)19×11 12×(19-111) (2)1?2n-1??2n+1? 12×(12n-1-12n+1) (3)a1+a2+a3+a4+…+a100 =12×(1-13)+12×(13-15)+12×(15-17)+12×(17-19)+…+12×(1199-1201) =12(1-13+13-15+15-17+17-19+…+1199-1201) =12(1-1201) =12×200201=100201. (责任编辑:admin) |