初中学习网-初中学习方法、解题技巧、知识点总结、学习计划、同步辅导资料!

初中学习网-人民教育出版社人教版部编同步解析与测评答案-电子课本资料下载-知识点总结学习方法与技巧补课解题技巧学习计划表-人教网-初中试卷网-中学学科网

美妙的幻方

http://www.newdu.com 2018-12-06 人民教育出版社 佚名 参加讨论

    美妙的幻方
    据传说,大约公元前2000年前的时候,位于陕西的洛河常常泛滥成灾,威胁着两岸人们的生活与生产。于是,大禹日夜奔忙,三过家门而不入,带领人们开沟挖渠,疏通河道,驯服了河水,感动了上天。事后,一只神龟从河中跃出,驮着一张图献给大禹。图上有九个数字。大禹因此得到上天赐给的九种治理天下的方法。这张图,就是闻名于世的洛书,见图1。洛书中每个小圆圈都代表一个l。所以把它写成现在的形式就是图2。
    
    图 1
    
4 9 2
3 5 7
8 1 6

    图 2 
          
    图2是由三行三列九个数字组成的正方形排列,它的每一行、每一列、每条对角线上的三个数字的和都是同一个常数15。这种美妙的正方形排列,在我国历史上,曾叫做“九宫图”,亦叫做纵横图。后来,人们称它为“幻方”。因为图2是由三行三列组成的,所以它被称为三阶幻方。现已确认,洛书是世界上最古老的幻方。
    三阶幻方是怎样构造出来的呢?我国宋朝数学家杨辉给出了一种简便的方法:如图3,将1至9九个数字斜着排列,然后把上下两个数字1和9对调,左右两个数字7和3对换,得到图4。再将图4中的上下左右四个数字9,1,3,7分别写进与它相邻的空格中,就得到前述的图2。
    
    图 3
    
    图 4
    不仅如此,杨辉对幻方还进行了较系统的研究,他是世界上第一位把幻方当作数学问题来研究的数学家。他构造出多种幻方,其中之一就是图5。它是由十六个数字组成的一种正方排列,其中每行每列、每条对角线上的数字和都是34。
    

    
4 9 5 16
14 7 11 2
15 6 10 3
1 12 8 13

    

    
13 9 5 1
14 10 6 2
15 11 7 3
16 12 8 4

    

        图 5                                                 图  6
    图5是怎样构造出来的呢?数学家杨辉为此给出了一种十分简单的方法,它与三阶幻方的构造有所不同。如图6,先将1至16的十六个数字按顺序排列在四行四列的方格中,然后把两条对角上、关于正方形中心对称的四对数,6和11,1和16,7和10,4和13分别对换,就得到图5。
    在四阶幻方中,一个颇为著名的幻方是印度太苏神庙石碑上的幻方,如图7,它刻于十一世纪。这个幻方中,不但每行每列每条对角线上的数字和为34,而且有20组某两行两列交叉点上的四个数字,它们的和也都为34,例如9+2+15+8=34。更为奇妙的是把这个幻方边上的行或列移到另一边上去,所得到的正方形排列仍是一个幻方。
    

    
9 6 15 4
7 12 1 14
2 13 8 11
16 3 10 5

    

    
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

    

    图 7
    

    图 8
    
 
    大约十五世纪,我国的纵横图传到欧洲,引起了人们的普遍兴趣,成千上万的人沉醉于幻方之中。德国画家丢勒(1427—1528)就是其中的一位。他找到了一个四阶幻方,如图8,并把它反映在他的著名版画《忧郁症》中。它也许是欧洲最早的幻方。有趣的是,丢勒在这一幻方中把版画创作的年代1514也放了进去。他可能正是从这两个数出发,通过不断的试验而找出了其余的数字。
    

    
19 20 2 1 23
18 12 17 10 8
21 11 13 15 5
4 16 9 14 22
3 6 24 25 7

    

    
6 7 -11 -12 10
5 -1 4 -3 -5
8 -2 0 2 -8
-9 3 -4 1 9
-10 -7 11 12 -6

    

    图9
    

    图10
    

    图9是一个五阶幻方,其中隐藏着一条绝妙的性质:幻方中的每个数字减去中心位置数字12后,得到一个这样的幻方(如图10),它的中心对称或轴对称上的两个数字互为相反数,并且中间位置上的九个数字也构成一个幻方。更值得一提的是,图10中隐含了如何由三阶幻方出发构造五阶幻方,又进而由五阶幻方构造出七阶幻方,等等行之有效的方法,限于篇幅,这里就不作介绍了。
    除了上面提及的一类方形幻方外,其它类型的幻方也各具风彩,深受人们的喜爱。
    

    
    

    
    

    图 11
    

    图 12
    
  我国数学家张潮(165~?年)在他的“算法补图”中,介绍了多种非常别致的幻方,优美的“龟文聚六图”就是其中之一,如图11。图11中,有二十四个数,每块龟文六边形上的数字和为75。
    在幻方中,最为稀有的幻方莫过于六角幻方,如图12。它的十五条直线上的数字和都为19的2倍38。它是由一位名叫阿当斯的人,经过四十多年的不懈努力才搞出来的。它的完美形式令人赞叹不已,他的锲而不舍的精神更感人至深。
    过去,幻方仅作为一种游戏,近代已经发现,幻方在计算机程序设计、图论、人工智能、对策论、组合分析等方面有广泛的应用。 (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
初中语文
初中数学
初中英语
初中物理
初中化学
初中生物
初中历史
初中地理
初中道德与法治
初中历史与社会
初中日语、俄语
学习方法
初中竞赛