数独的候选数法解题技巧 ──隐性数对删减法 (Hidden Pairs) 概说 遇到了高级、困难级的数独谜题,使得唯一候选数法和 隐性唯一候选数法黔驴技穷的时候,就是各种删减法上场的时机了。在各种的删减法中,哪一个要先用 是随个人之喜好的,并无限制。本页介绍的当然就要以隐性数对删减法优先啰! <图 1> 请看<图 1>的上右九宫格,数字 8、9 都只出现在(2, 8)和(2, 9)这两个宫格的候选数中;这时隐性数对删减法 的条件已成立了!这表示上右九宫格的数字 8 和 9 将只能填到这两个宫格中,而且:如果数字 8 将填入(2, 8), 那么(2, 9)就一定要填入数字 9;反之,如果数字 9 将填入(2, 8),那么(2, 9)就一定要填入数字 8; 不论哪一个状况出现,(2, 8)和(2, 9)这两个宫格的候选数中若还有其它数字,全部是多余无用的,因为这 两个宫格若填入数字 8、9 以外的数字,那么上右九宫格的数字 8 或 9 就将无处可填了。候选数的意义是 可能填入该宫格的数字,而这两个数字以外的数字已不可能再用来填入本宫格中了,所以可以毫不考虑的把 它们删减掉。当(2, 8)和(2, 9)这两个宫格的候选数都安全的删减成数字 8、9 之后,(2, 5)出现了列隐性 唯一候选数 2 ,于是可用隐性唯一候选数法来填入下一个解了。 整理一下: 1. 当某个数对仅出现在某个九宫格的某两个宫格候选数中时,就可以把这两个宫格的候选数删减成该数对。 2. 同理,当某个数对仅出现在某列的某两个宫格候选数中时,就可以把这两个宫格的候选数删减成该数对。 3. 当然,当某个数对仅出现在某行的某两个宫格候选数中时,就可以把这两个宫格的候选数删减成该数对。 利用「找出某个数对仅出现在某行、某列或某一个九宫格的某两个宫格候选数中的情形,进而将这两个 宫格的候选数删减成该数对」的方法就叫做隐性数对删减法(Hidden Pairs)。 当隐性数对删减法完成后,通常还可引发数对删减法;以<图 1>为例,当(2, 8)和(2, 9)这两个宫格的候选数 都安全的删减成数字 8、9 之后,还可利用数对删减法把 (2, 1)、(2, 2)、(2, 3) 这三个宫格候选数中的数字 8 删减掉。 隐性数对删减法示例 隐性数对删减法一共有 3 种状况:第一种发生在行、第二种是发生在列、第三种则发生在九宫格。<图 1> 就是 发生在九宫格的例子了,其它的情况举例如下: <图 2> <图 2> 是隐性数对删减发生在行的例子:图中第 2 行的数对 4、6 只出现在 (3, 2)及(9, 2) 这两个宫格 的候选数中,所以可以将(3, 2)及(9, 2)的候选数安全的删减成数对 4、6;而经此一删,(3, 3) 宫格出现 了列隐性唯一候选数 1 啦! <图 3> <图 3> 是隐性数对删减发生在列的例子:图中第 7 列的数对 4、7 只出现在 (7, 1)及(7, 8) 这两个宫格 的候选数中,所以可以将(7, 1)及(7, 8)的候选数安全的删减成数对 4、7;而经此一删,(8, 1) 宫格出现 了行隐性唯一候选数 2 啦! (责任编辑:admin) |