三、要始终抓住如何“从算术进展到代数”这个重要的基本课题 初一代数的数学内容从整体上看主要是解决从算术进展到代数这个重要的基本课题。我们认为主要体现在以下两个方面。一方面是“数集的扩充”,即引进负数,把原有的算术数集合扩充到有理数集合;另一方面是解代数方程的原理和方法,即从用字母表示数,到用“列方程”取代“列算式”解应用问题。 数集的每一次扩充都是解决实际问题和解决数学自身矛盾的需要。有理数概念的建立,有理数性质的介绍,有理数运算法则的规定,这一切都为同学们进一步学习代数做了必要的准备。同学们在学习有理数一章时,希望大家要有意识地培养自己逻辑推理能力,使自己会观察、比较、分析、综合、抽象和概括,会用归纳和类比的方法进行推理。另外要特别重视提高运算能力,有过硬的运算基本功。为此,不仅能根据法则、运算规律、公式等正确地进行运算,而且理解运算的算理,能够根据题目条件,使运算“合理、简捷、准确”。为了解决用算术方法解应用题的局限性,人们想出用字母表示未知数,把问题中的相等关系平铺直叙地用代数方程式表达出来。由于表示未知数的字母也是数,因此,它们也可以按照数的运算的通性、通法进行运算,从而求得未知数所应有的值。同学们要充分注意这一“历史性”的突破。为此,不仅要熟练掌握含数字的算术的变形和计算,更要切实掌握好含字母的代数式(目前主要是整式)的变形和计算,解方程的基本方法和步骤,这一切都是为列方程解应用题而展开的。通过列方程解应用题的学习,体会如何把实际问题抽象成数学问题,用方程思想处理数学问题,形成用数学的意识,培养我们自己分析问题和解决问题的能力。 四、改进学习方法,把握好数学学习的每个环节 许多数学学习好的同学,他们都有符合本人实际的学习方法,能较好地把握数学学习的各个环节。诸如每个阶段能制定学习计划;课前认真自学、预习数学课本;带着“问题”专心上好每节数学课,积极思维;课后及时复习所学的知识,独立完成作业,认真、及时解决疑难问题,改正作业中出现的错误;每到一个单元结束时,做好复习小结,对知识和解题类型方法进行系统整理,考前认真进行准备,考后注意总结考试的经验教训;另外坚持参加数学课外小组活动,阅读数学辅导读物等。这些都体现了学习活动的全过程是一个互相联系的有机的系统工程,虽然看起来是老生常谈,但坚持下去决不是一件容易做到的事情。需要有高度的进取精神,刻苦踏实的学习态度,顽强拼搏的学习毅力。我们建议同学们在学习的某一个阶段时着重克服一个缺点,重点解决一个问题。同学之间互帮互学,加强研究、讨论的风气,你追我赶,相互促进,使我们大家能在初一的第一学期为今后的学习打好坚实的基础。预祝同学们在老师的指导和自己的努力下,使自己的数学学习水平和能力有较大的提高。 (责任编辑:admin) |